30 research outputs found

    Deep generative modelling of the imaged human brain

    Get PDF
    Human-machine symbiosis is a very promising opportunity for the field of neurology given that the interpretation of the imaged human brain is a trivial feat for neither entity. However, before machine learning systems can be used in real world clinical situations, many issues with automated analysis must first be solved. In this thesis I aim to address what I consider the three biggest hurdles to the adoption of automated machine learning interpretative systems. For each issue, I will first elucidate the reader on its importance given the overarching narratives of both neurology and machine learning, and then showcase my proposed solutions to these issues through the use of deep generative models of the imaged human brain. First, I start by addressing what is an uncontroversial and universal sign of intelligence: the ability to extrapolate knowledge to unseen cases. Human neuroradiologists have studied the anatomy of the healthy brain and can therefore, with some success, identify most pathologies present on an imaged brain, even without having ever been previously exposed to them. Current discriminative machine learning systems require vast amounts of labelled data in order to accurately identify diseases. In this first part I provide a generative framework that permits machine learning models to more efficiently leverage unlabelled data for better diagnoses with either none or small amounts of labels. Secondly, I address a major ethical concern in medicine: equitable evaluation of all patients, regardless of demographics or other identifying characteristics. This is, unfortunately, something that even human practitioners fail at, making the matter ever more pressing: unaddressed biases in data will become biases in the models. To address this concern I suggest a framework through which a generative model synthesises demographically counterfactual brain imaging to successfully reduce the proliferation of demographic biases in discriminative models. Finally, I tackle the challenge of spatial anatomical inference, a task at the centre of the field of lesion-deficit mapping, which given brain lesions and associated cognitive deficits attempts to discover the true functional anatomy of the brain. I provide a new Bayesian generative framework and implementation that allows for greatly improved results on this challenge, hopefully, paving part of the road towards a greater and more complete understanding of the human brain

    Deep Variational Lesion-Deficit Mapping

    Full text link
    Causal mapping of the functional organisation of the human brain requires evidence of \textit{necessity} available at adequate scale only from pathological lesions of natural origin. This demands inferential models with sufficient flexibility to capture both the observable distribution of pathological damage and the unobserved distribution of the neural substrate. Current model frameworks -- both mass-univariate and multivariate -- either ignore distributed lesion-deficit relations or do not model them explicitly, relying on featurization incidental to a predictive task. Here we initiate the application of deep generative neural network architectures to the task of lesion-deficit inference, formulating it as the estimation of an expressive hierarchical model of the joint lesion and deficit distributions conditioned on a latent neural substrate. We implement such deep lesion deficit inference with variational convolutional volumetric auto-encoders. We introduce a comprehensive framework for lesion-deficit model comparison, incorporating diverse candidate substrates, forms of substrate interactions, sample sizes, noise corruption, and population heterogeneity. Drawing on 5500 volume images of ischaemic stroke, we show that our model outperforms established methods by a substantial margin across all simulation scenarios, including comparatively small-scale and noisy data regimes. Our analysis justifies the widespread adoption of this approach, for which we provide an open source implementation: https://github.com/guilherme-pombo/vae_lesion_defici

    O fator de risco na mídia

    Full text link

    The legibility of the imaged human brain

    Full text link
    Our knowledge of the organisation of the human brain at the population-level is yet to translate into power to predict functional differences at the individual-level, limiting clinical applications, and casting doubt on the generalisability of inferred mechanisms. It remains unknown whether the difficulty arises from the absence of individuating biological patterns within the brain, or from limited power to access them with the models and compute at our disposal. Here we comprehensively investigate the resolvability of such patterns with data and compute at unprecedented scale. Across 23810 unique participants from UK Biobank, we systematically evaluate the predictability of 25 individual biological characteristics, from all available combinations of structural and functional neuroimaging data. Over 4526 GPU*hours of computation, we train, optimize, and evaluate out-of-sample 700 individual predictive models, including multilayer perceptrons of demographic, psychological, serological, chronic morbidity, and functional connectivity characteristics, and both uni- and multi-modal 3D convolutional neural network models of macro- and micro-structural brain imaging. We find a marked discrepancy between the high predictability of sex (balanced accuracy 99.7%), age (mean absolute error 2.048 years, R2 0.859), and weight (mean absolute error 2.609Kg, R2 0.625), for which we set new state-of-the-art performance, and the surprisingly low predictability of other characteristics. Neither structural nor functional imaging predicted individual psychology better than the coincidence of common chronic morbidity (p<0.05). Serology predicted common morbidity (p<0.05) and was best predicted by it (p<0.001), followed by structural neuroimaging (p<0.05). Our findings suggest either more informative imaging or more powerful models will be needed to decipher individual level characteristics from the brain.Comment: 36 pages, 6 figures, 1 table, 2 supplementary figure

    The minimal computational substrate of fluid intelligence

    Full text link
    The quantification of cognitive powers rests on identifying a behavioural task that depends on them. Such dependence cannot be assured, for the powers a task invokes cannot be experimentally controlled or constrained a priori, resulting in unknown vulnerability to failure of specificity and generalisability. Evaluating a compact version of Raven's Advanced Progressive Matrices (RAPM), a widely used clinical test of fluid intelligence, we show that LaMa, a self-supervised artificial neural network trained solely on the completion of partially masked images of natural environmental scenes, achieves human-level test scores a prima vista, without any task-specific inductive bias or training. Compared with cohorts of healthy and focally lesioned participants, LaMa exhibits human-like variation with item difficulty, and produces errors characteristic of right frontal lobe damage under degradation of its ability to integrate global spatial patterns. LaMa's narrow training and limited capacity -- comparable to the nervous system of the fruit fly -- suggest RAPM may be open to computationally simple solutions that need not necessarily invoke abstract reasoning.Comment: 26 pages, 5 figure

    Body weight and mood state modifications in mixed martial arts: An exploratory pilot

    Get PDF
    Brandt, R, Bevilacqua, GG, Coimbra, DR, Pombo, LC, Miarka, B, and Lane, AM. Body weight and mood state modifications in mixed martial arts: An exploratory pilot. J Strength Cond Res 32(9): 2548-2554, 2018-Mixed martial arts (MMA) fighters typically use rapid weight loss (RWL) as a strategy to make competition weight. The aim of the present study was to compare body weight and mood changes in professional male MMA athletes who used strategies to rapidly lose weight (n = 9) and with MMA athletes who did not (n = 3). Body mass and mood states of anger, confusion, depression, fatigue, tension, and vigor and total mood disturbance were assessed (a) 30 days before competition, (b) at the official weigh-in 1 day before competition, (c) 10 minutes before competition, and (d) 10 minutes postcompetition. Results indicated that RWL associated with reporting higher confusion and greater total mood disturbance at each assessment point. Rapid weight loss also associated with high anger at the official weigh-in. However, in performance, RWL did not have deleterious effects on performance. The RWL group also reported greater total mood disturbance at all assessment points with a moderate difference effect size. Research supports the notion that RWL associates with potentially dysfunctional mood states

    Mapping density, diversity and species-richness of the Amazon tree flora

    Get PDF
    Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution
    corecore